5 – 7 December 2023, Main Days: 5 – 6 December, Estrel Hotel Berlin, Germany
CTI SYMPOSIUM
KEEPING PACE DURING THE TRANSFORMATION TOWARDS ELECTRIC MOBILITY International Congress and Expo | 5 – 7 December 2023, Estrel Hotel, Berlin
Early Bird Tickets
register now
Expo
Become a partner
Call for Papers
Become a speaker
CALL FOR PAPERS 2023
CTI invites automotive powertrain and industry experts to present their visions, innovations, findings and opinions during 5 & 6 December 2023 in Berlin.
Supporting the path to climate-neutral mobility, the CTI SYMPOSUM GERMANY 2023 expands its range of topics.
Besides electric drives & components CTI SYMPOSIUM GERMANY 2023 will add low-carbon mobility, renewable energies, infrastructure, upstream CO2 reduction and sustainable use of materials. Lectures and discussion topics will include electric drive units, e-motors, batteries, thermal management, NVH, inverters and other power electronics, among others.
Developments and applications for trucks pose a particular challenge and will be another focus area.
In addition to the component level, higher-level topics will also be discussed, looking beyond the powertrain boundaries.
CONTRIBUTE TO THE PATH TO CARBON-FREE MOBILITY!
Hand in your topic proposal and volunteer for a speaking opportunity.
STRATEGIES AND TECHNOLOGIES FOR CARBON-FREE MOBILITY
The automotive industry is transforming rapidly towards zero-emissions mobility.
While net zero emissions can be achieved with different drive systems and primary energy carriers, all solutions have one thing in common: CO2-neutral mobility based on renewable energy sources.
The International CTI SYMPOSIUM and its flanking specialist exhibition is THE industry event in Europe dedicated to sustainable automotive powertrain technologies for passenger cars and commercial vehicles. The event brings together automotive decision makers and industry experts discussing latest strategies, technologies, innovations and the automotive powertrain as part of the greater energy transition!
Meet International Automotive Decision Makers and Experts!
Extensive OEM and supplier reports & panels
Delegates from 20+ countries
100+ speakers and panelists
Hundreds of delegates and companies attending
Deep dive sessions
Extensive exhibition for powertrain technologies, components, materials and engineering solutions
Karsten Bennewitz, Head of Powertrain and Energy System Development, Volkswagen AG, Germany Joerg Brandscheid, Chief Technology Officer Polestar, Sweden Toshihiro Hirai, Senior Vice President, Powertrain Technology Engineering, Nissan Motor Co., Ltd, Japan Gerald Killmann, Senior Vice President Purchasing and R&D, Toyota Motor Europe Prof. Dr Arno Kwade, Director, Institute for Particle Technology, Technische Universität Braunschweig Patrick Leteinturier, Director R&D Fellow Automotive Systems, Infineon Technologies AG Michael Lohscheller, President and CEO, Nikola Corporation
Prof. Dr Christian Mohrdieck, Chief Commercial Officer, cellcentric GmbH & Co. KG Dr Thomas Schlick, Senior Partner, Roland Berger GmbH, Germany Prof. Florian Schupp, Head of Purchasing and Supplier Management, Automotive Technologies, Schaeffler Automotive Bühl GmbH & Co. KG, Germany Mathieu Soulas, Senior Vice President Strategy & Supply, TotalEnergies Marketing & Services Ruiping Wang, Vice President General Manager, Zhe Jiang Geely Powertrain Co., Ltd, China Dr Frederik Zohm, CTO, Member of the Executive Board, R&D, MAN Truck & Bus SE
After more than 20 successful years, the chair and co-founder of CTI SYMPOSIUM GERMANY, Prof. Dr. Ferit Küçükay, is passing the baton to Prof. Dr. Malte Jaensch. Prof. Küçükay began working with CTI back in 1999, when he chaired the first specialist conference on vehicle transmissions. Two years earlier, he had been appointed professor and […]
After more than 20 successful years, the chair and co-founder of CTI SYMPOSIUM GERMANY, Prof. Dr. Ferit Küçükay, is passing the baton to Prof. Dr. Malte Jaensch.
Prof. Küçükay began working with CTI back in 1999, when he chaired the first specialist conference on vehicle transmissions. Two years earlier, he had been appointed professor and Director of the Institute for Vehicle Technology at the TU Braunschweig from his managerial role at BMW.
The new cooperation with CTI soon paid dividends: by 2001, the specialist conference had become an international symposium for innovators, decision-makers and specialists from all over the world.
Prof. Küçükay is a respected scientist, author and co-author of numerous publications and specialist books (his latest is the comprehensive work “Fundamentals of Vehicle Technology”). He is also a strategic and technical expert with a deep grasp of the topics, trends and technologies that matter in the vehicle and drive industry. As CTI chair, these abilities enabled him to attract high-profile speakers from international companies. Under his leadership, an advisory board comprising international experts from the industry and universities was set up.
The CTI Symposium grew to become Europe’s foremost industry get-together, covering all relevant fields connected to vehicle drives. One example of the importance of the CTI Symposium among specialists is the term DHT, or Dedicated Hybrid Transmission. This was first defined and introduced by the Advisory Board, and is now used internationally. Building on its successful track record, the CTI Symposium later expanded to the USA and to China.
As the topics of importance in the industry changed, so did the topic portfolio at the symposia. In the early days, transmissions for conventional drives and their components played the main role; these were later joined by transmissions for hybrid and electric drives. Today, the main focus rests on electrified and electric drives for cars and commercial vehicles.
An extensive trade exhibition also evolved alongside the wide-ranging lecture program. This exhibition, together with the seminars Prof. Küçükay has held on all three continents over the years and his commitment to giving attendees a hands-on experience of the latest technologies at the numerous Test Drives, have fueled the growth of the CTI Symposium into a unique industry event.
After over twenty years of outstanding work as chair, and as Chairman of the Advisory Board, Prof. Küçükay will pass on his role as chair to Prof. Malte Jaensch, Head of the Chair for Sustainable Mobile Drive Systems at the Technical University of Munich, during the CTI SYMPOSIUM GERMANY 2023.
Malte Jaensch studied mechanical engineering at the TU Braunschweig, followed by a doctorate in mechatronics at Imperial College London. His doctoral thesis was recognized as the best in mechanical engineering. Next, he founded a startup for high-performance electric motors and drives in the UK; six years later, the company was taken over by GKN. From 2013 to 2021, Prof. Jaensch was Head of Electric Drivetrain at Porsche Engineering.
With his long years of experience in the industry, his engineering expertise and his understanding of the challenges the industry faces, Prof. Jaensch is ideally equipped to help the CTI Symposium evolve further. Under his leadership, the different electrified and electric drives and their most important components will remain in focus, and related issues will continue to be addressed and discussed.
CTI wishes to thank Prof. Dr. Ferit Küçükay for over two decades of successful cooperation, and we welcome his ongoing support in his future role as Founding Chairman. At the same time, we look forward to moving the CTI SYMPOSIUM forward with Prof. Malte Jaensch at the wheel, and to growing this international industry get-together for sustainable automotive drives further still.
Aaron Kappes , Steffen Frei , Sebastian Luz , Prof. Stephan Rinderknecht, Institute for Mechatronic Systems, TU Darmstadt; Institute for power electronics and control of drives, TU Darmstadt An electric Two-Drive-Powertrain using two electric machines is presented, which allows a highly efficient over all usage. The multi-motor approach achieves a downsizing effect, when one motor is deactivated during […]
Aaron Kappes , Steffen Frei , Sebastian Luz , Prof. Stephan Rinderknecht, Institute for Mechatronic Systems, TU Darmstadt; Institute for power electronics and control of drives, TU Darmstadt
An electric Two-Drive-Powertrain using two electric machines is presented, which allows a highly efficient over all usage. The multi-motor approach achieves a downsizing effect, when one motor is deactivated during moderate driving. The novel features of the powertrain are its electric synchronized dog clutches and its two highly overloadable electric machines, each connected to a two-speed sub transmission providing a total of four different electric speeds. This arrangement enables full torque support during shifting processes. In addition, the waste heat from the inverters and the electric machines is used for heating the transmission oil under cold environmental conditions, thus increasing efficiency. Furthermore, the possibility and advantages of adding an internal combustion engine mechanically linked to both sub transmissions and its realization in a public founded project is addressed.
Introduction
Increasing efficiency is a major target in the development of electric drivetrains. In parallel to established BEVs with one electric motor and a fixed transmission ratio, multi-speed [1, 2] and multi-motor [3, 4, 5] con-cepts are gaining importance. At the IMS of the TU Darmstadt, research is focused on multi-motor and multi-speed drives called TDT („Two-Drive-Transmission“). These electric drives combine high efficiency and performance by using a downsizing effect, according to which a highly utilized electric drive can be operated more efficiently than a large one in its corresponding partial load.
The conceptual benefits of an all-electric concept with two small electric machines with two speeds each, called TDT22, have al-ready been outlined in [6]. Efficiency advantages of up to 8.3% were identified for urban use compared to a benchmark fixed speed BEV. For short and slow driving, there is almost no alternative to a BEV from an ecological point of view. When it comes to long range, [7] stated that it is currently not reasonable to realize high ranges by using larger and heavier batteries. The battery capacity of BEVs ca-pable of reliably reaching distances greater than 500 km increases to more than 100 kWh. A current P2 hybrid concept with optimized energy storage sizes and propulsion machines shows poten-tial to reduce the CO2 footprint from cradle to grave because of its smaller battery. To achieve this, however, it must be charged regularly and driven mainly electrical. In addition, there are user benefits such as rapid refueling e.g., using renewable fuels in the future if an even longer distance is to be covered.
With these potentials in perspective, this paper will focus on the de-velopment of a hybrid version of a TDT22 already mentioned in [8]; a TDT4LR („Two-Drive-Transmission for Long Range“). This concept is based on a DRT (Dedicated Range-Extender Transmission) and is cur-rently being developed and built in the public funded Project DE4LoRa for a dedicated use case.
1. Development
The vehicle being developed in DE4LoRa is designed for a typical German average user and leaves a minimal environmental footprint. According to the “Kraftfahrt-Bundesamt” [9] the 101-110 kW power class contained in 2020 by far the most new-registrations in one of the dis-crete subdivisions. This number was only topped by the open-ended category of more than 151 kW. At the same time, the most frequently registered class was the rather unspecific one of SUVs, closely followed by the C-segment [10]. As the former is not suited for an ecological vehicle, the focus is on the latter. According to a study from the Federal Ministry for Digital and Transport called “Mobility in Germany” sur-veyed in 2017 [11], approx. 80% of passenger car trips covered less than 20 km, with only approx. 30% of the total mileage of a vehicle reached on short distances of less than 20 km in total. Therefore, the develop-ment of the drivetrain was focused on this use case (e.g., daily commute to work and twice a year a long trip on vacation).
A BEV designed for this user profile needs a large and heavy battery, barely using its full capacity. In contrast, the DE4LoRa concept was de-veloped to cover ranges of up to 100 km electric combined with the high efficiency benefits of a TDT22. To reduce complexity, two iden-tical electric machines have been designed, each realizing a continu-ous power of at least 40 kW to enable highly efficient driving with one EM during moderate cycles like the WLTC. Furthermore, they can jointly provide 120 kW peak power for short sporty driving. To enable shifting without interrupting traction even at high accelerations, both electric motors are able to provide 120 kW each for the very short duration of a shifting process. The development of these permanent magnet syn-chronous machine is further described in [12].
Assuming constant transmission efficiencies, as well as a constant bat-tery voltage and temperatures, a simple heuristic operating strategy for electric modes can be created. The resulting shifting map for this TDT22 is shown in Figure 1. The advantages of four different electric gears com-pared to a non-shiftable transmission are described in more detail in [6].
In an overall assessment of the electric consumption, the relatively low transmission losses cause a significant proportion of the total loss-es due to the high efficiency of power electronics, electric machines, and batteries. Therefore, electrically synchronized dog clutches were chosen to avoid friction losses which would occur in mechanical syn-chronization units. Furthermore, the losses of a transmission increase with higher viscosity of the transmission oil e.g., at low temperatures. To keep the efficiency as high as possible after a frequently expected cold start in winter, it can be beneficial to use the waste heat from the electrical components for conditioning the transmission oil. To further increase electrical efficiency, DE4LoRa also uses a rather high voltage level up to 820 V. Since the efficiency drops with the voltage over the state of charge of a battery, the latter should be kept as high as possible. In this concept, the electrical consumption in the WLTC increases by ap-prox. 5% if started at an SOC of 25% compared to 90%.
For the use case described above, highly efficient short-range electric driving alone is insufficient. To improve the concept for occasional long-distance, a monovalent methane gas engine is added. This engine can be connected to both sub-transmissions with different gear ratios, as shown in Figure 2, enabling multiple parallel and serial hybrid modes. This integration combined with the high dynamics and performance of the electric drive allowes the gas motor to be operated in a phlegma-tized manner, thus minimizing emissions and maximizing its efficiency.
In addition, methane provides a high energy density per carbon atom, can be produced synthetically more efficiently than liquid synthetic fuels, and, unlike hydrogen, is easy to store and benefits from an existing infrastruc-ture. Optimizing the gear ratios of this transmission involves a compro-mise between highly efficient electric and SOC-neutral hybrid modes, with SOC-neutral consumption being more sensitive to changes. It has been shown that an electric overdrive provides efficiency benefits, re-sulting in a top speed of 180 km/h in SOC-neutral operation in the third, not fourth gear.
2. Oil-Conditioning
During optimization constant transmission efficiencies were assumed between 96.9 and 97.8% for each mode-dependent combination of two spur gears. In real applications, these effi-ciencies depend not only on the acting speeds and torques but also on the viscosity of the gear oil and thus its temperature. With lower temperatures, the transmission losses increase disproportionately. The inverter and electric machine generate usually unused waste heat. If the lubrication concept of the transmis-sion already uses an oil pump, the heat can be used for conditioning the oil by adding a heat exchanger.
The potential depends on several parameters like the current efficien-cies, the water flow rate, and the oil used. To investigate the possibili-ties for this project, an analytical transmission loss model was created, which includes the viscosity of the gear oil in its calculations of churning losses, meshing losses, sealing losses, and bearing losses. Not only the load-carrying elements but also all co-rotating parts for every mode are considered. This model is supplemented by a lumped-element thermal model of all transmission components. All loss effected transmission parts as well as a water-oil heat exchanger and 30% of the losses of the electric machine at the input shafts are implemented as heat sources. Thus, both the self-heating of the gearbox and the heat transfer from an external water circuit is represented.
Two different transmission oils and two different scenarios were consid-ered, using only modes with one EM for simplification. First, a common rather more viscous transmission oil was modeled corresponding to a SAE 80W90. Figures 3 and 4 show the simulation results for a cold start in the Artemis Urban cycle with 0°C ambient temperature.
The efficiency changes of the transmission are shown in Figure 4; in blue without using the heat exchanger, in red with a water flow rate of 1 l/min. In addition, the efficiency with an oil temperature of 60°C at the beginning is shown as a benchmark in gray. Figure 5 shows the most relevant results of the simulations. The heat exchanger in this configuration enables an efficiency advantage of 1.3% which is no-ticeable, but significantly lower than the efficiency with already warm oil. If the gear layout and the acting surface pressures allow the use of an oil with (very) low viscosity, much higher total savings are pos-sible. On the other hand, the benefits of conditioning are hardly notice-able with this lubricant. Finally, the potential in a WLTC at 20°C ambi-ent temperature is evaluated, whereby the heat exchanger leads to an 0.6% lower energy consumption. Prospectively, the usage of additional waste heat by other consumers, such as an internal combustion engine, could achieve greater improvements. Furthermore, the effect could be improved by further optimizing the flow rates and quantity of water and oil.
Conclusion
The concept idea for a hybrid TDT22, the development process as well as the results achieved in the DE4LoRa project so far were stated. It is tailored to fulfill the requirements of an average Ger-man driver with minimized ecological footprint. It covers short distances in highly efficient elec-tric driving due to the advantages of four speeds, uses a comparatively small and thus light battery, a high voltage level, and supplementary oil conditioning. To maximize efficiency, it is rec-ommended to keep the SOC as high as possible. In addition, the effect of transmission oil con-ditioning was examined in more detail, and in summary, the loss reduction potential depends primarily on the oil used. If a conventional trans-mission oil is used, there can be considerable efficiency benefits for short trips and cold am-bient temperatures – 1.3% in this example. How-ever, if the design or maintenance strategy al-lows using a low-viscosity oil, the effect if an oil conditioning decreases significantly and com-bined with longer driving distances and higher ambient temperatures, becomes unnoticeable small.
Gratification We want to thank Max Clauer, Zhihong Liu, and Arved Eßer for theirhelpful feedback and advice.References[1] Biermann, T, “The Innovative Schaeffler Modular E-Axle“, April 2018, Schaeffler Symposium[2] Schmidt, C., Dhejne H., Vallant, W.,
„AVL Two-speed e-Axle – High Efficient and Shiftable Under Load”, November 2021, CTI Symposium, Berlin[3] Xu X., Liang J., Hao Q., Dong, P, et al., “A Novel Electric Dual Motor Transmission for Heavy Commercial Vehicles”, Januar 2021, Automotive Innovation, Springer[4] Hirano, K., Hara, T., “Development of dual motor multi-mode e-axle”, November 2021, CTI Symposium, Berlin[5] Brückner, U., Strop, M., Zimmer, D., „Mehrmotorenantriebssys-teme – intelligente Betriebsstrategie“, May 2017, Antriebstechnik[6] Eßer, A., Mölleney, J., Rinderknecht, S., „Potentials to reduce the Energy Consumption of Electric Vehicles in Urban Traffic”, Juli 2022, VDI Dritev, Baden-Baden[7] Eßer, A., “Realfahrtbasierte Bewertung des ökologischen Potentials von Fahrzugantriebskonzepten“, 2021, Shaker[8] Langhammer, F., Kappes, A., Viehmann, A., Rinderknecht, S., „Novel “Two-Drive-Transmission for Long-Range” Powertrain: Ecology and Efficiency meet Driving Comfort”, October 2021, VDI Dritev, Bonn[9] Kraftfahrt-Bundesamt, „Fahrzeugzulassungen (FZ) Neuzulassungen von Personenkraftwagen und Krafträdern nach Motorisierung Jahr 2020“ – FZ 22; https://www.kba.de/SharedDocs/Downloads/DE/Statistik/Fahrzeuge/FZ22/fz22_2020.pdf?__blob=publicationFile&v=5 last checked: 11-10-2022[10] Kraftfahrt-Bundesamt, „Neuzulassungen von Personenkraftwagen nach Segmenten und Modellreihen“ – FZ 11; https://www.kba.de/DE/Statistik/Fahrzeuge/Neuzulassungen/Segmente/n_segmente_node.html?yearFilter=2020 last checked: 11-10-2022[11] infas, DLR, IVT und infas 360, “Mobilität in Deutschland – MiD: Ergebnisbericht,” Im Auftrag des BMVi, 2017;http://www.mobilitaet-in-deutschland.de/pdf/MiD2017_Ergebnis-bericht.pdf last checked: 11-10-2022[12] Clauer, M., Binder, A., “Automated Fast Semi-Analytical Calculation Approach for the Holistic Design of a PMSM in a Novel Two-Drive Transmission”, September 2022, ICEM, Valencia
Ruiping Wang, Geely Auto Senior Vice President, joined CTI SYMPOSIUM GERMANY 2022 as plenary speaker via video from China. See her contribution “Geely’s strategy and practice in powertrain electrification” as video and hear about BEV growth rates, the regulatory context, and Geely´s drive solutions and outlook on HEV, PHEV and BEV in the Chinese market.
Ruiping Wang, Geely Auto Senior Vice President, joined CTI SYMPOSIUM GERMANY 2022 as plenary speaker via video from China. See her contribution “Geely’s strategy and practice in powertrain electrification” as video and hear about BEV growth rates, the regulatory context, and Geely´s drive solutions and outlook on HEV, PHEV and BEV in the Chinese market.
JJE DirectFluxTM Mono-stable and Bi-stable Electromagnetic Clutches for Disconnect and Differential Locker Applications Jing-Jin Electric (JJE) has been developing electromagnetic clutches for various electric drive applications over a decade. Instead of using “reluctance” magnetic force, JJE electromagnetic clutches utilize direct magnetic force – flux in the same direction as the magnetic force – which is […]
JJE DirectFluxTM Mono-stable and Bi-stable Electromagnetic Clutches for Disconnect and Differential Locker Applications
Jing-Jin Electric (JJE) has been developing electromagnetic clutches for various electric drive applications over a decade. Instead of using “reluctance” magnetic force, JJE electromagnetic clutches utilize direct magnetic force – flux in the same direction as the magnetic force – which is named “DirectFluxTM”. A mono-stable clutch is engaged by actuation current, and disengaged by spring force when the current is off. A bi-stable clutch will only change its state when there’s an affirmative pulse of command current; otherwise, it will hold its state. Earlier this year, JJE launched industry’s first bi-stable electromagnetic clutch for automotive applications.
The technology roadmap for developing an electromagnetic dog clutch (EMDC) plays a key role in the product’s developing stage. Back to 2009, JJE started to develop the electromagnetic clutch in “DirectFluxTM” concept. The first generation (Gen 1) EMDC product is a circle configuration, mainly applied on hybrid systems as a hybrid mode clutch, which was very successful in China’s commercial market.
In 2017, the 2nd generation (Gen 2) EMDC product was launched, and expanded its application to transmission shifting after optimization over mechanical design. The “crescent” configuration was developed and added in the JJE’s EMDC family.
In early 2019, JJE began the development of 3rd generation (Gen 3) EMDC. The third generation (Gen 3) EMDC features further innovations. It has both mono-stable and bi-stable options. It overcame some limitations of the existing design. Coils evolved to smaller solenoids, and magnetic circuit are further optimized to reduce flux leakage. The Gen 3 EMDC is more capable, faster, functionally safer, and more energy efficient.
DirectFluxTM Electromagnetic Clutch
JJE’s DirectFluxTM mono-stable electromagnetic clutch has several advantages because of its unique magnetic circuit design and mechanical structure. Compared to the more conventional reluctance flux magnetic circuit design, the DirectFluxTM design greatly reduces flux leakage, therefore it utilizes the magnetic flux to generate force more effectively. The reluctance flux design cannot avoid magnetization of parts near flux circuit, or “flux leakage”, which cause less effective utilization of the magnetic flux.
Because of the more effective flux utilization, the DirectFluxTM clutch has much higher electromagnetic force than reluctance flux clutch, therefore it acts 2-3 times faster, as shown in the charts.
Bi-stable Electromagnetic Clutch
The bi-stable electromagnetic clutch – still based on JJE’s DirectFluxTM electromagnetics – is an innovation beyond JJE’s mono-stable electromagnetic clutch. It uses permanent magnets to hold the clutch in its en-gaged position, while still allowing the electromagnetic coil to “push” the clutch plate away while disengaging. As the clutch can self-hold at both engaged and disengaged positions, there is no need for holding current as the mono-stable clutch does. The operation current curve exactly illustrates the difference between the mono-stable and bi-stable. For bi-stable clutch, the operation only needs to provide a current pulse to switch the clutch’s state (see Fig.).
The bi-stable clutch is inherently fail-safe as it won’t change state in the event of loss of holding current. This feature brings the bi-stable clutch a higher safety level than mono-stable clutch for disconnect, differential lock-er, and transmission shift applications. As far as energy consumption, the bi-stable clutch’s feature of “zero hold-ing current” achieves the zero consumption.
Figure 4: Operation Comparison Between Mono-stable and Bi-stable Clutch
Disconnect
JJE’s mono-stable clutch has already been successfully applied on electric drive disconnect. In an offset, layshaft reduction gearbox, the disconnect clutch is on the output and is integrated with differential. Compared with disconnect on the input shaft or on the layshaft, the output shaft discon-nect cuts out most mechanical losses. JJE is also introducing bi-stable electromagnetic clutch to disconnect application. There is no holding current or power consumption when the clutch is engaged. It is mechanically fail-safe in the event of critical electrical or control fault. When the vehicle is in AWD state, all-wheel power will be maintained for consistency; when the vehicle is in the 2WD state – or secondary axle disconnected – the secondary axle won’t be suddenly engaged, which would cause big jerk, or even wheel lockup at low traction. DirectFluxTM bi-stable clutch has a great performance on the action time. The differential locker and disconnect driven by DirectFluxTM bi-stable EMDC have been tested on JJE’s Dynamometer. The average action time is less than 70ms, and only current pulses are needed for engagement and disengagement. With JJE’s disconnect clutch, the drag loss reduction is remarkable. In a typical 200kW electric drive unit with permanent magnet motor, at 150km/h vehicle speed, the drag loss reduction is greater than 90%, or from nearly 8kW to less than 500W.
Differential Locker
JJE debuted industry’s first electromagnetic bi-stable differential locker at 2022 CTI US. Bi-stable’s greatest advantage is still fail-safe – in the event of critical electrical or control fault, this bi-stable feature can prevent sudden locker release and dangerous loss of tractionThis bi-stable DirectFluxTM differential locker will be used in high capability pick-up trucks, SUVs and off-road vehicles in independent electric drive module (EDM) or eBeam axles. It will be launched into production in 2023 in JJE’s newest 6000Nm, 300kW Silicon Carbide EDM for a high-end 4×4 SUV by a leading OEM, which features over 100% gradeability.“JJE has been developing and producing electromagnetic clutch for over a decade”, says Ping Yu, JJE’s Chairman and Chief Engineer, “we have pioneered electromagnetic dog clutch’s application in many areas and generated multiple global patents. The introduction of the bi-stable clutch technology is more exciting – it brings security like a mechani-cal sleeve clutch while maintaining or even improving all other great aspects of an electromagnetic clutch. It will further reinforce our leadership in electric drive technology”.